top of page

Publications

NAD metabolism modulates inflammation and mitochondria function in diabetic kidney disease

Komuraiah Myakala, Xiaoxin X. Wang, Nataliia V. Shults, Ewa Krawczyk, Bryce A. Jones, Xiaoping Yang, Avi Z. Rosenberg, Brandon Ginley, Pinaki Sarder, Leonid Brodsky, Yura Jang, Chan Hyun Na, Yue Qi, Xu Zhang, Udayan Guha, Ci Wu, Shivani Bansal, Junfeng Ma, Amrita Cheema, Chris Albanese, Moshe Levi

Abstract

Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.

Keywords: NAD, sirtuin 3, mitochondria, inflammation, diabetes, cGAS-STING, diabetic kidney disease, mitochondrial,  DNA damage

Anchor 1

An Association Study of DNA Methylation and Gene Expression in Angelman Syndrome: A Bioinformatics Approach

Panov, Julia, and Hanoch Kaphzan. 2022. "An Association Study of DNA Methylation and Gene Expression in Angelman Syndrome: A Bioinformatics Approach" International Journal of Molecular Sciences 23, no. 16: 9139

Abstract

Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of function of the E3-ligase UBE3A. Despite multiple studies, AS pathophysiology is still obscure and has mostly been explored in rodent models of the disease. In recent years, a growing body of studies has utilized omics datasets in the attempt to focus research regarding the pathophysiology of AS. Here, for the first time, we utilized a multi-omics approach at the epigenomic level and the transcriptome level, for human-derived neurons. Using publicly available datasets for DNA methylation and gene expression, we found genome regions in proximity to gene promoters and intersecting with gene-body regions that were differentially methylated and differentially expressed in AS. We found that overall, the genome in AS postmortem brain tissue was hypo-methylated compared to healthy controls. We also found more upregulated genes than downregulated genes in AS. Many of these dysregulated genes in neurons obtained from AS patients are known to be critical for neuronal development and synaptic functioning. Taken together, our results suggest a list of dysregulated genes that may be involved in AS development and its pathological features. Moreover, these genes might also have a role in neurodevelopmental disorders similar to AS.

Keywords: Angelman syndrome; transcriptome; DNA methylation; RNA-seq; bisulfite-seq; multi-omics

Transcriptome landscapes that signify Botrylloides leachi (Ascidiacea) torpor states

Y. Hyams, J. Panov, A. Rosner, L. Brodsky, Y. Rinkevich, B. Rinkevich; Developmental Biology, July 2022 

Abstract

Harsh environments enforce the expression of behavioural, morphological, physiological, and reproductive rejoinders, including torpor. Here we study the morphological, cellular, and molecular alterations in torpor architype in the colonial urochordate Botrylloides aff. leachii by employing whole organism Transmission electron (TEM) and light microscope observations, RNA sequencing, real-time polymerase chain reaction (qPCR) quantification of selected genes, and immunolocalization of WNT, SMAD and SOX2 gene expressions. On the morphological level, torpor starts with gradual regression of all zooids and buds which leaves the colony surviving as condensed vasculature remnants that may be ‘aroused’ to regenerate fully functional colonies upon changes in the environment. Simultaneously, we observed altered distributions of hemolymph cell types. Phagocytes doubled in number, while the number of morula cells declined by half. In addition, two new circulating cell types were observed, multi-nucleated and bacteria-bearing cells. RNA sequencing technology revealed marked differences in gene expression between different organism compartments and states: active zooids and ampullae, and between mid-torpor and naive colonies, or naive and torpid colonies. Gene Ontology term enrichment analyses further showed disparate biological processes. In torpid colonies, we observed overall 233 up regulated genes. These genes included NR4A2, EGR1MUC5AC, HMCN2 and. Also, 27 transcription factors were upregulated in torpid colonies including ELK1HDAC3, RBMX, MAZ, STAT1STAT4 and STAT6. Interestingly, genes involved in developmental processes such as SPIRE1, RHOA, SOX11, WNT5A and SNX18 were also upregulated in torpid colonies. We further validated the dysregulation of 22 genes during torpor by utilizing qPCR. Immunohistochemistry of representative genes from three signaling pathways revealed high expression of these genes in circulated cells along torpor. WNT agonist administration resulted in early arousal from torpor in 80% of the torpid colonies while in active colonies WNT agonist triggered the torpor state. Abovementioned results thus connote unique transcriptome landscapes associated with Botrylloides leachii torpor.

Comparative Genomics Analysis of Repetitive Elements in Ten Gymnosperm Species: "Dark Repeatome" and Its Abundance in Conifer and Gnetum Species

Titievsky A, Putintseva YA, Taranenko EA, et al. Comparative Genomics Analysis of Repetitive Elements in Ten Gymnosperm Species: "Dark Repeatome" and Its Abundance in Conifer and Gnetum Species. Life (Basel). 2021;11(11):1234. Published 2021 Nov 15

Abstract

Repetitive elements (RE) and transposons (TE) can comprise up to 80% of some plant genomes and may be essential for regulating their evolution and adaptation. The "repeatome" information is often unavailable in assembled genomes because genomic areas of repeats are challenging to assemble and are often missing from final assembly. However, raw genomic sequencing data contain rich information about RE/TEs. Here, raw genomic NGS reads of 10 gymnosperm species were studied for the content and abundance patterns of their "repeatome". We utilized a combination of alignment on databases of repetitive elements and de novo assembly of highly repetitive sequences from genomic sequencing reads to characterize and calculate the abundance of known and putative repetitive elements in the genomes of 10 conifer plants: Pinus taeda, Pinus sylvestris, Pinus sibirica, Picea glauca, Picea abies, Abies sibirica, Larix sibirica, Juniperus communis, Taxus baccata, and Gnetum gnemon. We found that genome abundances of known and newly discovered putative repeats are specific to phylogenetically close groups of species and match biological taxa. The grouping of species based on abundances of known repeats closely matches the grouping based on abundances of newly discovered putative repeats (kChains) and matches the known taxonomic relations.

Keywords: gymnosperms, repetitive elements, principal component analysis

A defective viral genome strategy elicits broad protective immunity against respiratory viruses

Y Xiao, P Lidsky, Y Shirogane, R Aviner, C-T Wu, W Li, W Zheng, D Talbot, A Catching, G Doitsh, W Su, C Gekko, A Nayak, J Ernst, L Brodsky, E Brodsky, E Rousseau, S Capponi, S Bianco, R Nakamura,P Jackson, J Frydman, R Andino; Cell, Nov 2021

Abstract

RNA viruses generate defective viral genomes (DVGs) that can interfere with replication of the parental wild-type virus. To examine their therapeutic potential, we created a DVG by deleting the capsid-coding region of poliovirus. Strikingly, intraperitoneal or intranasal administration of this genome, which we termed eTIP1, elicits an antiviral response, inhibits replication, and protects mice from several RNA viruses, including enteroviruses, influenza, and SARS-CoV-2. While eTIP1 replication following intranasal administration is limited to the nasal cavity, its antiviral action extends non-cell-autonomously to the lungs. eTIP1 broad-spectrum antiviral effects are mediated by both local and distal type I interferon responses. Importantly, while a single eTIP1 dose protects animals from SARS-CoV-2 infection, it also stimulates production of SARS-CoV-2 neutralizing antibodies that afford long-lasting protection from SARS-CoV-2 reinfection. Thus, eTIP1 is a safe and effective broad-spectrum antiviral generating short- and long-term protection against SARS-CoV-2 and other respiratory infections in animal models.

Keywords: defective viral genomes, broad-spectrum, antiviral, innate immunity, interferon, RNA viruses, respiratory infection, SARS-CoV-2

Development of infrastructure for a systemic multidisciplinary approach to study aging in retired sled dogs

Fleyshman DI, Wakshlag JJ, Huson HJ, Loftus JP, Olby NJ, Brodsky L, Gudkov AV, Andrianova EL. Development of infrastructure for a systemic multidisciplinary approach to study aging in retired sled dogs. Aging (Albany NY). 2021 Sep 2813:21814-21837.

Abstract

Canines represent a valuable model for mammalian aging studies as large animals with short lifespans, allowing longitudinal analyses within a reasonable time frame. Moreover, they develop a spectrum of aging-related diseases resembling that of humans, are exposed to similar environments, and have been reasonably well studied in terms of physiology and genetics. To overcome substantial variables that complicate studies of privately-owned household dogs, we have focused on a more uniform population composed of retired Alaskan sled dogs that shared similar lifestyles, including exposure to natural stresses, and are less prone to breed-specific biases than a pure breed population. To reduce variability even further, we have collected a population of 103 retired (8-11 years-old) sled dogs from multiple North American kennels in a specialized research facility named Vaika. Vaika dogs are maintained under standardized conditions with professional veterinary care and participate in a multidisciplinary program to assess the longitudinal dynamics of aging. The established Vaika infrastructure enables periodic gathering of quantitative data reflecting physical, physiological, immunological, neurological, and cognitive decline, as well as monitoring of aging-associated genetic and epigenetic alterations occurring in somatic cells. In addition, we assess the development of age-related diseases such as arthritis and cancer. In-depth data analysis, including artificial intelligence-based approaches, will build a comprehensive, integrated model of canine aging and potentially identify aging biomarkers that will allow use of this model for future testing of antiaging therapies.

Intra- and Inter-cellular Modeling of Dynamic Interaction between Zika Virus and Its Naturally Occurring Defective Viral Genomes

Sharov V, Rezelj VV, Galatenko VV, Titievsky A, Panov J, Chumakov K, Andino R, Vignuzzi M, Brodsky L. Intra- and Inter-cellular Modeling of Dynamic Interaction between Zika Virus and Its Naturally Occurring Defective Viral Genomes. J Virol. 2021 Oct 27;95(22):e0097721. doi: 10.1128/JVI.00977-21. Epub 2021 Sep 1. PMID: 34468175; PMCID: PMC8549522

Abstract

Here, we examine in silico the infection dynamics and interactions of two Zika virus (ZIKV) genomes: one is the full-length ZIKV genome (wild type [WT]), and the other is one of the naturally occurring defective viral genomes (DVGs), which can replicate in the presence of the WT genome, appears under high-MOI (multiplicity of infection) passaging conditions, and carries a deletion encompassing part of the structural and NS1 protein-coding region. Ordinary differential equations (ODEs) were used to simulate the infection of cells by virus particles and the intracellular replication of the WT and DVG genomes that produce these particles. For each virus passage in Vero and C6/36 cell cultures, the rates of the simulated processes were fitted to two types of observations: virus titer data and the assembled haplotypes of the replicate passage samples. We studied the consistency of the model with the experimental data across all passages of infection in each cell type separately as well as the sensitivity of the model's parameters. We also determined which simulated processes of virus evolution are the most important for the adaptation of the WT and DVG interplay in these two disparate cell culture environments. Our results demonstrate that in the majority of passages, the rates of DVG production are higher inC6/36 cells than in Vero cells, which might result in tolerance and therefore drive the persistence of the mosquito vector in the context of ZIKV infection. Additionally, the model simulations showed a slower accumulation of infected cells under higher activation of the DVG-associated processes, which indicates a potential role of DVGs in virus attenuation.

 

IMPORTANCE One of the ideas for lessening Zika pathogenicity is the addition of its natural or engineered defective virus genomes (DVGs) (have no pathogenicity) to the infection pool: a DVG is redirecting the wild-type (WT)-associated virus development resources toward its own maturation. The mathematical model presented here, attuned to the data from interplays between WT Zika viruses and their natural DVGs in mammalian and mosquito cells, provides evidence that the loss of uninfected cells is attenuated by the DVG development processes. This model enabled us to estimate the rates of virus development processes in the WT/DVG interplay, determine the key processes, and show that the key processes are faster in mosquito cells than in mammalian ones. In general, the presented model and its detailed study suggest in what important virus development processes the therapeutically efficient DVG might compete with the WT; this may help in assembling engineered DVGs for ZIKV and other flaviviruses.

Keywords: Zika virus; defective virus genomes; mathematical modeling.

Angelman Syndrome and Angelman-like Syndromes Share the Same Calcium-Related Gene Signatures

J. Panov, H. Kaphzan; International Journal of Molecular Sciences, Sept 2021

Abstract

Angelman-like syndromes are a group of neurodevelopmental disorders that entail clinical presentation similar to Angelman Syndrome (AS). In our previous study, we showed that calcium signaling is disrupted in AS, and we identified calcium-target and calcium-regulating gene signatures that are able to differentiate between AS and their controls in different models. In the herein study, we evaluated these sets of calcium-target and calcium-regulating genes as signatures of AS-like and non-AS-like syndromes. We collected a number of RNA-seq datasets of various AS-like and non-AS-like syndromes and performed Principle Component Analysis (PCA) separately on the two sets of signature genes to visualize the distribution of samples on the PC1–PC2 plane. In addition to the evaluation of calcium signature genes, we performed differential gene expression analyses to identify calcium-related genes dysregulated in each of the studied syndromes. These analyses showed that the calcium-target and calcium-regulating signatures differentiate well between AS-like syndromes and their controls. However, in spite of the fact that many of the non-AS-like syndromes have multiple differentially expressed calcium-related genes, the calcium signatures were not efficient classifiers for non-AS-like neurodevelopmental disorders. These results show that features based on clinical presentation are reflected in signatures derived from bioinformatics analyses and suggest the use of bioinformatics as a tool for classification. 

Keywords: 

Angelman syndromeAngelman-like syndromescalcium signalingRNA sequencingtranscriptomecalcium-target genescalcium-regulating genes

Adenovirus transduction to express human ACE2 causes obesity-specific morbidity in mice, impeding studies on the effect of host nutritional status on SARS-CoV-2 pathogenesis

P Rai, C Chuong, T LeRoith, J Smyth, J Panov, M Levi, K Kehn-Hall,N Duggal, J WegerLucarelli; Virology, Sept 2021

Abstract

The COVID-19 pandemic has paralyzed the global economy and resulted in millions of deaths globally. People with co-morbidities like obesity, diabetes and hypertension are at an increased risk for severe COVID-19 illness. This is of overwhelming concern because 42% of Americans are obese, 30% are pre-diabetic and 9.4% have clinical diabetes. Here, we investigated the effect of obesity on disease severity following SARS-CoV-2 infection using a well-established mouse model of diet-induced obesity. Diet-induced obese and lean control C57BL/6 N mice, transduced for ACE2 expression using replication-defective adenovirus, were infected with SARS-CoV-2, and monitored for lung pathology, viral titers, and cytokine expression. No significant differences in tissue pathology or viral replication was observed between AdV transduced lean and obese groups, infected with SARS-CoV-2, but certain cytokines were expressed more significantly in infected obese mice compared to the lean ones. Notably, significant weight loss was observed in obese mice treated with the adenovirus vector, independent of SARS-CoV-2 infection, suggesting an obesity-dependent morbidity induced by the vector. These data indicate that the adenovirus-transduced mouse model of SARS-CoV-2 infection, as described here and elsewhere, may be inappropriate for nutrition studies.

Keywords: COVID-19, Diet-induced obesity, hACE2, Replication-defective adenovirus, Tissue, Pathology.

Defective viral genomes as therapeutic interfering particles against flavivirus infection in mammalian and mosquito hosts

Y. Xiao, P. Lidsky, Y. Shirogane, R. Aviner, C-T Wu, W. Li, W. Zheng, D. Talbot, A. Catching, G. Doitsh, W. Su, C. Gekko, A. Nayak, J. Ernst, L. Brodsky, E. Brodsky, E. Rousseau, S. Capponi, S. Bianco, R. Nakamura, P. Jackson, J. Frydman, R. Andino; Cell, Nov. 2021

Abstract

Arthropod-borne viruses pose a major threat to global public health. Thus, innovative strategies for their control and prevention are urgently needed. Here, we exploit the natural capacity of viruses to generate defective viral genomes (DVGs) to their detriment. While DVGs have been described for most viruses, identifying which, if any, can be used as therapeutic agents remains a challenge. We present a combined experimental evolution and computational approach to triage DVG sequence space and pinpoint the fittest deletions, using Zika virus as an arbovirus model. This approach identifies fit DVGs that optimally interfere with wild-type virus infection. We show that the most fit DVGs conserve the open reading frame to maintain the translation of the remaining non-structural proteins, a characteristic that is fundamental across the flavivirus genus. Finally, we demonstrate that the high fitness DVG is antiviral in vivo both in the mammalian host and the mosquito vector, reducing transmission in the latter by up to 90%. Our approach establishes the method to interrogate the DVG fitness landscape, and enables the systematic identification of DVGs that show promise as human therapeutics and vector control strategies to mitigate arbovirus transmission and disease.

bottom of page